The strong edge colorings of a sparse random graph
نویسنده
چکیده
The strong chromatic index of a graph G is the smallest integer k such that the edge set E( G) can be partitioned into k induced subgraphs of G which form matchings. In this paper we consider the behavior of the strong chromatic index of a sparse random graph K (n, p), where p = p(n) = 0(1).
منابع مشابه
Constraining the clustering transition for colorings of sparse random graphs
Let Ωq denote the set of proper q-colorings of the random graphGn,m,m = dn/2 and let Hq be the graph with vertex set Ωq and an edge {σ, τ} where σ, τ are mappings [n]→ [q] iff h(σ, τ) = 1. Here h(σ, τ) is the Hamming distance | {v ∈ [n] : σ(v) 6= τ(v)} |. We show that w.h.p. Hq contains a single giant component containing almost all colorings in Ωq if d is sufficiently large and q ≥ cd log d fo...
متن کاملPerfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کاملSparse Graphs Usually Have Exponentially Many Optimal Colorings
A proper coloring of a graph G = (V,E) is called optimal if the number of colors used is the minimal possible; i.e., it coincides with the chromatic number of G. We investigate the typical behavior of the number of distinct optimal colorings of a random graph G(n, p), for various values of the edge probability p = p(n). Our main result shows that for every constant 1/3 < a < 2, most of the grap...
متن کاملDomination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملAcyclic 3-Colorings and 4-Colorings of Planar Graph Subdivisions
An acyclic coloring of a graph G is an assignment of colors to the vertices of G such that no two adjacent vertices receive the same color and every cycle in G has vertices of at least three different colors. An acyclic k-coloring of G is an acyclic coloring of G with at most k colors. It is NP-complete to decide whether a planar graph G with maximum degree four admits an acyclic 3-coloring [1]...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 18 شماره
صفحات -
تاریخ انتشار 1998